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A simple, mathematical model of thermal coupling in fuel cell stacks
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Abstract

The authors develop a model of steady state thermal transfer in polymer electrolyte membrane fuel cell stacks. The model is appropriate
for straight coolant channel unit cell designs and considers quantities averaged over the cross-channel direction, ignoring the impact of the
gas and coolant channel geometries. At steady state and under the assumption that the membrane and electrodes are infinitesimally thin, a
simple description can be made of the temperature distribution in the cells. The model provides estimates on two important quantities: the
local temperature difference between coolant and membrane, and the spread of heat from an anomalously hot cell to its neighbours in a
stack environment. The former question is easy to address after the model is presented. The latter requires small argument Laplace transform
a ation of the
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symptotics that correspond to a large scaled heat transfer coefficient to the coolant channels. Results of computational approxim
odel are also shown and compared to the asymptotics.
2005 Elsevier B.V. All rights reserved.
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. Introduction

A polymer electrolyte membrane fuel cell (PEMFC) is an
lectrochemical device in which the energy of the chemical
eaction is converted directly into electricity. By combining
ydrogen fuel with oxygen from air, electricity is formed
ithout combustion of any form. Water and heat are the only
yproducts when hydrogen is used as the fuel source. Further
etails of general fuel cell operation can be found in[1].

Computational modelling of fuel cell operation has been
een as a way to perform design optimization more efficiently
han by experimental testing in certain situations. Early low-
imensional averaged models of unit cell performance were
eveloped in[2] and elsewhere. A modern version of this kind
f model was recently developed by our group[3]. Three-
imensional computational models have been developed in

4–8], for example. These are finite volume computational
ools that describe the coupled mass transport and electro-
hemistry in unit cells.

∗ Corresponding author. Tel.: +1 604 822 5784.
E-mail addresses:kpromisl@math.msu.edu (K. Promislow),

etton@math.ubc.ca (B. Wetton).

A few authors[9,10] have concentrated specifically
computational models of heat transfer in fuel cells. Ac
rate approximation of temperature profiles is of interes
the application since current fuel cell membranes degra
the temperature increases 10–20◦C past standard operati
points. Thermal profiles also determine (and are affecte
where condensation occurs, which also has a large impa
performance. Despite the importance, there have been f
tempts to model the effects of cell-to-cell coupling in a st
environment. A first attempt was made in our own work[11].
The present paper can be viewed as a mathematical an
of a simplified version of the model presented there that g
insight into the way heat is spread from anomalously hot
in a stack.

The main simplification of the model is that it consid
heat transfer only in an averaged sense over the cross-ch
geometry, as discussed in Section2.2. This simplification
limits the model to qualitative accuracy. Another signific
limitation to the model is that it does not couple the comp
temperature profiles to performance. This means that it
not predict phenomena of local thermal runaway, cause
such mechanisms as the feedback loop between mem
378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2005.02.032
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drying and heat production. However, the ability of the model
to predict the spread of heat in a stack environment does
give insight in to designs where such runaway conditions
can occur and how to develop designs that can suppress
them. Currently, there is no experimental data to validate
the model, which was developed in part to allow experi-
mentalists to investigate what kind of measurements would
give useful insight into quantitative aspects of heat transfer
in fuel cell stacks. Such experiments are currently being
undertaken.

In Section2, we develop the basic model. In Section3, we
nondimensionalize the equations and present two alternate
reformulations of the equations, one suitable for computa-
tion and the other for analysis. In Section4, we present the
small argument Laplace transform analysis that leads to an
approximate analytic formula for the extent of the spreading
of heat from an anomalously hot cell in a stack. In Section5,
we compare computational and analytic solutions. Most of
the notation and values of physical parameters are given in
Section2.

2. Basic model

We consider a unit fuel cell as shown inFig. 1, which is
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Fig. 2. Cross-section (x–y) of stacked unit cells.

1. The MEAs can be taken to be infinitesimally thin. The ef-
fect of MEA structure can be added as done in[11]. These
effects are not insignificant (the majority of the heat is
produced in the cathode electrode due to the ORR over-
potential). However, we choose to neglect these effects for
simplicity in the current model which aims at qualitative
description of stack level thermal coupling.

2. Heat is generated only in the MEA layer and that the heat
flux Qj is given and constant inx andz for each unit cell
but that it may vary between cells in the stack.

3. Heat is removed only by the coolant and that local (y–
z plane) conduction to the coolant is dominant. That is,
heat conduction in thex-direction of the plates can be
neglected. This will be true except in an asymptotically
small region near cell inlet and outlet where corrections
are needed to match to given insulating or radiative con-
ditions. We neglect these small end effects.

4. The geometric effects of the gas channels can be ignored
and the thermal transport from electrodes to coolant chan-
nels through the plates can be described approximately by
a one-dimensional conjugate heat transfer process with
standard transfer coefficients.

We also neglect stack end effects (for example, convection
from end cell surfaces). These effects are known to be im-
portant[12], but our work here concentrates on the thermal
c
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ot drawn to scale. The electrodes and membrane tog
known collectively as the membrane electrode assemb
EA) are thinner than the plates. We model cells with stra

in x) coolant channels such as the Ballard Mk 9 hardw
lthough other designs such as serpentine channels are

5].
Unit cells are stacked together in series to make a fue

tack. The anode plate of one cell is put against the ca
late of the next. The combined plate is known as abipolar
late. A schematic is shown inFig. 2. We will use subscript
to indicate the cell number in the stack.

We make the following assumptions:

Fig. 1. Schematic of unit fuel cell.
oupling effects of cells away from stack ends.
Assumptions 1 and 2 above are made just for the

enience of the analytic investigations of this paper. S
reliminary results of a more complete model are give

11], where the temperature distribution through the ME
odelled and approximate heat fluxes from membrane

ance, condensation and overpotential losses varyingx)
re used from an existing performance model.

Assumptions 3 and 4 are what lead to great simplifica
n the model equations. They are discussed in more d
n Sections2.1 and 2.2. We take all quantities to be averag
ver the cross-channelz-direction and useT j(x) to denote th
verage coolant temperatures,βj(x) for plate temperatures
he coolant andθj(x) for MEA temperatures. All temperatur
re taken relative to the inlet coolant temperature. We arr
system of ordinary differential algebraic equations (D

n these variables below.
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We use the following physical constants:

c: Coolant heat capacity (J kg−1 K−1).
Qc: Coolant flux per unitz in each cell (kg s−1 m−1).
A: Coolant transfer factor 5600 W m−2 K−1 derived in Sec-

tion 2.2.
κ: Bipolar plate thermal conductivity. Considerable vari-

ability in this value can be found for different plate con-
struction. Varying values for through planey and in-
plane x–z are also reported. We take the single value
1.29 W m−1 K−1 [13] that corresponds to graphite 20–40
mesh as a base value for this study.

L: Single plate thickness (1 mm).
Lc: Cell length (1 m).
Q: Heat flux 7000 W m−2 as a base value. This roughly

corresponds to a current density of 10,000 A m−2 (or
1 A cm−2) at about 50% overall efficiency.

T
: Target coolant temperature increase from inlet to outlet
for an average cell. We takeT
 = 15 K. This determines
cQc as shown below.

The coolant temperature increases according to how much
heat it absorbs locally:

cQc
dTj

dx
= A(βj − Tj), (1)

w o the
c han-
n t flux
b lant:
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integrating(1) from inlet to outlet and specifying the target
temperature increase, we obtain the value

cQc = LcQ

T


(5)

for the combinationcQc, which can be considered to be the
thermal carrying capacity of the coolant flow, per unit width.
T (x) is linear from 0 toT
. At everyx, the plate temperature
by the coolantβ is larger than the coolant by

Q

A
≈ 1.25 K

and the MEA temperatureθ is larger than this plate temper-
ature by

LQ

2κ
≈ 2.71 K

using the base parameters above. The main objective of this
work is to determine how anomalously large heating in one
cell in a stack of cells at base conditions will be distributed
through the stack.

2.1. Heat removal
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here the RHS above describes the local heat flux in t
oolant, expressed by the flux from the edge of coolant c
el to its average temperature. We now consider two hea
alances, the first at the MEA and the second at the coo

j = κ

L
(θj − βj) + κ

L
(θj − βj−1) (2)

(βj − Tj) = κ

L
(θj − βj) + κ

L
(θj+1 − βj) (3)

ere, we have used simple expressions for one-dimens
teady heat conduction. The two terms on the right-hand
f (2) represent heat flux leaving the MEA up and do
espectively. In(3), the two terms on the right-hand side r
esent the heat flux flowing from cellj and cellj + 1, respec
ively, into coolant channelj.

We have boundary conditions

j(0) = 0 (4)

or eachj (recall temperatures are all relative to the coo
nlet temperature common to all cells since the flow is f

common source distributed by a header). Eqs.(1)–(3)are a
rst-order DAE to be solved from inletx = 0 with conditions
4) to outletx = Lc. In the theoretical analysis that follow
e assume a stack with an infinite number of cells. In c
utations, we can consider a finite stack, periodic inj. These
re conveniences in this paper where we are not expl
onsidering stack end effects.

If we consider a uniform stack (Qj = Q for all j), then
qs.(1)–(3)have a simple solution common to all cellsj. By
In this section, we show that the heat removal by t
al conduction through the graphite plates in-planex–z is
egligible as well as the heat removed by the reactan
treams.

We consider the oxidant stream with pure air. At inlet,
olar flow rate of oxygen per unitz is

ILc

4F
,

hereS is thestoichiometricflow rate (the dimensionle
ow rate to the minimum to generate the desired curr
e takeS = 2. I is the current density of the cell whi
e take to be 10,000 A m−2 andF is Faraday’s consta

96485 C mol−1). The heat removed by the gas stream at
tant pressure is approximately

1

Xo
S

ILc

4F
cNT
,

here Xo ≈ 0.2 is the molar fraction of oxygen in a
nd cN is the specific heat capacity of nitrogencN =
9.1 J mol−1 K−1 [13]. The heat removed by the coolant
nit width isQLc. The ratio of heat removal by the catho
as stream to the coolant is then approximately

S

Xo

IcNT


Q4F
≈ 0.016.

his is small enough to be neglected.
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We now approximate the heat transferred per unit width
by plate conduction, which can be found to be

2Lκ

Lc
T
.

The ratio of this heat transfer to that of the coolant is

2Lκ

QL2
c
T
 ≈ 3.7 × 10−7, (6)

which can be neglected even if the in-plane conductivity of
the plates is two orders of magnitude larger than through
plane which has been reported[12]. This justifies the neglect
of the in-plane thermal transport in the plates away from cell
ends.

2.2. Averaging over cross-plane

The cross-plane (y–z) geometry is shown inFig. 3. We
discuss briefly here the reasoning that leads to the one-
dimensional approximation of the cross-plane transport used
in the model equations above. If the effect of the gas channel
geometries are neglected and the temperatures at the MEA (θ)
and the temperatures at the coolant channel edge and centre
line of the bipolar plates (β) can be taken to be constant inz,
w rly
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nels). We assume the flux into the coolant is uniform
around its circumference and that the coolant flow is lam-
inar. Using standard conjugate heat transfer theory[14], we
find

Q
Lw

πD
= Nu

κo

D
(βj − Tj),

whereNu is a dimensionless number that depends on the
coolant channel shape, 48/11 for the case of the circular chan-
nels considered here,Lw is the spacing between the channels
which we take to be 1 mm andκo is the conductivity of the
coolant taken to be 0.41 W m−1 K−1 [12]. This leads to the
value

A = Nu
πκo

Lw
≈ 5600 W m−2 K−1

used in the model above.

3. Nondimensionalization and formulations

We solve(2) for θj:

θj = 1

2

(
βj + βj−1 + LQj

κ

)
, (7)

a

β

T ns
d
a

t
t er-
a

−

w
W ease
t

nless
v

tion.
nd use this result in(3) to obtain

j+1 −
(

2 + 2LA

κ

)
βj + βj−1 + 2LA

κ
Tj

= −L

κ
(Qj + Qj+1). (8)

his equation with(1) is used for the numerical computatio
escribed in Section5. Values of the MEA temperaturesθj

re post-processed using(7).
We further combine(1) with (3) to eliminate the coolan

emperaturesTj and obtain an equation for the plate temp
turesβ alone:

cQc

W
{β̇j+1 − 2(1+ W)β̇j + β̇j−1}

= κ

L
(βj+1 − 2βj + βj−1) + (Qj + Qj+1), (9)

here the dot denotes differentiation with respect tox, and
= LA/κ, a dimensionless ratio of the temperature incr

hrough the plates to that of the plates to the coolant.
We now scale the equations and variables. Dimensio

ariables are denoted by hats.

Flux: We scale the fluxes to make them order unity:

Qj = QQ̂j,

whereQ is the representative value of the previous sec
e are led to formulas(2) and (3). These assumptions clea
re not rigorously valid and are made for the convenienc

he simplified analysis to follow. The results we obtain
imited toqualitativeaccuracy only.

If we consider a net average thermal flux densityQcoming
rom the MEAs above and below the coolant channel sh
n Fig. 3, we see that the average thermal flux density into
oolant is

Lw

πD
,

here Lw is the MEA width associated with one cha
el (that is, the cell width divided by the number of ch

ig. 3. Cross-plane (y–z) view of a unit cell. The channel structure repe
n thez-direction. Unit cells are stacked in they-direction.
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Temperature: The scaling of temperature is dictated by the
thermal scaling above

βj = QL

κ
β̂j.

Length: The natural length scaling follows:

x = cQcL

Wκ
x̂,

where the length scale above can be further simplified to

LcQ

T
A

with our parameters. In Section4, an asymptotic theory for
largex̂ is presented. We have ˆx ∈ [0, AT
/Q] ≈ [0, 12]
for the base parameters and numerical experiments show
the asymptotics are valid at outlet. The asymptotic regime
corresponds to largeAT
/Q which can be considered to
be a scaled coolant channel thermal transfer coefficient.

In scaled variables, dropping the hats,(9) becomes

{β̇j+1 − 2(1+ W)β̇j + β̇j−1} + βj+1 − 2βj + βj−1

= −(Qj + Qj−1). (10)

ion.
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This can be seen by inserting the form above into Eq.(13)for
coolant channels not adjacent to the anomaly (j not equal to
0 or −1). For these cells, the right-hand side of(13) is zero
and

C(s)G1/2
{

Gj+1 − 2

(
1 + sW

s + 1

)
Gj + Gj−1

}
= 0

for j > 0 and a similar expression forj < −1. This rela-
tionship can be satisfied for allj > 0 (and the equivalent
relationship forj < −1) if G(s) solves

G2 − 2

(
1 + Ws

1 + s

)
G + 1 = 0 (14)

with |G| < 1. Consider(13)atj = 0 (or equivalently atj =
−1) to determineC(s):

C(s)G−1/2
(

G2 − 2

(
1 + sW

1 + s

)
G + G

)
= −1

s
.

In the bracket above add and subtract 1, then use(14) to
simplify the expression to

C(s)G−1/2(G − 1) = −1

s
,

o

C

a ns-
f

β

n
t
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t
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s

G

N

β

w e
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This equation is considered analytically in the next sect

. Analysis

Consider now(8) atx = 0, whereTj(0) = 0 for all j. Let
j denoteβj(0). We obtain under our scaling:

j+1 − 2(1+ W)bj + bj−1 = −(Qj + Qj+1). (11)

We take the Laplace transform of(10):

s + 1)β̃j+1 − 2(s + sW + 1)β̃j + (s + 1)β̃j−1

= bj+1 − 2(1+ W)bj + bj−1 − 1

s
(Qj + Qj+1)

= −1

s
(s + 1)(Qj + Qj+1), (12)

where we have used tildes for the Laplace transform
here(11)was used. After dividing bys + 1, we obtain:

˜
j+1 − 2

(
1 + sW

s + 1

)
β̃j + β̃j−1 = −1

s
(Qj + Qj+1).

(13)

We now consider an anomalous cell (j = 0) in an infi-
ite stack generating uniformly more heat than any othe
0 = 1 but Qj = 0 for all otherj. Resulting temperatur

re increases from base temperatures. Eq.(13)has a solutio
f the form:

˜
j(s) = C(s)G|j+1/2|.
r

(s) = 1

s

1

G−1/2 − G1/2 ,

nd so the following is an explicit form of the Laplace tra
orm for the plate temperatures:

˜
j(s) = 1

s

1

G(s)−1/2 − G(s)1/2G(s)|j−1/2|. (15)

For fixed j, the expression(15) is analytic except o
he negative real axis. It has branch points ats = 0 and
= −1/(2 + W) and has algebraic growth as|s| → ∞. It
atisfies the conditions of Watson’s lemma[15] and the larg
behaviour is determined by the smalls asymptotics of th

ransform. We consider the form ofG for ssmall in(14):

2 − 2(1+ Ws)G + 1 ≈ 0,

o

≈ 1 + Ws −
√

(1 + Ws)2 − 1 ≈ 1 −
√

2Ws.

ow, (15)becomes

˜
j ≈ 1

s3/2
√

2W
e−|(j−1/2)|√2Ws, (16)

here the alternate formG ≈ e−√
2Ws has been used in th

pproximation ofG|j−1/2| in order to obtain(16). The ex-
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pression above has a known inverse transform:

βj ≈ 1√
2W

{
2

√
x

π
e−(j−1/2)2W/2x − |j − 1/2|

√
2W erfc

×
(

|j − 1/2|
√

W

2x

)}
, (17)

where erfc is the complementary error function. Since(16)
is accurate to O(

√
s) the expression(17)has errors O(1/

√
x)

for fixed j.
The expression(17)is analogous to the solution of the heat

equation in a semi-infinite rod forced by a fixed heat flux in at
the end (see[16], for example), wherexplays the role of time
andj of a discretized spatial variable. It is clear the physical
models are also similar.

We note that in this setting with one anomalously heated
cell, plate temperature increases grow like

√
x. In a uniformly

heated stack, base temperatures increase linearly. The expres-
sion above shows that the anomalous heat spreads out to a
characteristic number of adjacent cellsJ characterized by

J(x) ≈
√

2x

W
.

If we consider the spread at the outlet of a cell of lengthL

t

J

w t de-
p re
v

β

i

β

w
f
t

5

-
t y
c dis-
c of
2

Fig. 4. Temperatures from an anomalously hot centre cell, base conditions.
The solid line is the anomalous cellj = 1, dashed line isj = 2 and dotted
line is j = 3. Symbols represent the asymptotic solutions.

temperaturesθj can be reconstructed using(7). We use a grid
of N = 100 in the channel length discretization.

As an example, we take a 17-cell stack (M = 8) and take
Q0 = Q but all otherQj = 0. This simulates a stack with a
centre cell running very hot. On its own (isolated with one
coolant channel), it would runT
 degrees hotter at outlet than
normal. The temperatures computed from the study should
be thought of asincreasesfrom normal temperature profiles.
In Fig. 4, we show the results for the base parameters; in
Fig. 5, the results ifA is doubled from the base case (coolant
thermal conductivity doubled); and inFig. 6, the results ifκ/L
is doubled (plate conductivity doubled or thickness halved).
Note that doublingAhas little effect on the solution spread but
doublingκ/L spreads out the heat from the anomalous cell to
more neighbouring cells. This agrees with the approximate
analytic predictions above.

F
s e
i

c
hen we obtain, recalling the length scaling:

≈
√

2κT


QL
≈ 2.4 (18)

ith our parameters. Note that this expression does no
end onA and increases withκ/L. These predictions a
erified in the computations shown in the next section.

We remark that we could have used the expression

˜
j ≈ 1

s3/2
√

2W
− |j − 1/2|

s

nstead of(16) leading to the expression

j ≈
√

2x

Wπ
− |j − 1/2|

hich is asymptotically as accurate as(17). However, this
orm gives negative (unphysical) values for smallx (out of
he asymptotic range).

. Computations

We consider a 2M-cell periodic stack usingM computa
ional cells labelled 1 (anomaly) up toM using symmetr
onditions. The computations are based on an implicit
retization of(1) and (8), considered as a linear system
M unknownsTj andβj at the next space step inx. MEA
ig. 5. Temperatures from an anomalously hot centre cell, doubledA. The
olid line is the anomalous cellj = 1, dashed line isj = 2 and dotted lin

s j = 3. Symbols represent the asymptotic solutions.
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Fig. 6. Temperatures from an anomalously hot centre cell, doubledκ/L. The
solid line is the anomalous cellj = 1, dashed line isj = 2 and dotted line
is j = 3. Symbols represent the asymptotic solutions.

In Figs. 4–6, the approximate analytic solution forβ is
shown for the equivalent parameters. The agreement is very
good for largerxvalues, where the analytic results are asymp-
totically valid.

6. Summary

We have developed models describing the temperature
distribution in a fuel cell stack under several assumptions.
Approximate analysis of the model leads to an analytic ex-
pression(18)for the characteristic number of cells anomalous
heat is spread to.
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